Multistep Redox Systems, LXVI^[1]

An Uncommon Derivative of 4*H*-Thiopyran-4-one: 4*H*,8*H*-Thiopyrano[3,2-*b*]thiopyran-4,8-dione: Synthesis, Redox Properties, and Calculations

Martin Hemmerling^{a[2]}, Siegfried Hünig*a, Martina Kemmera, and Karl Peters^b

Institut für Organische Chemie der Universität Würzburg^a, Am Hubland, D-97074 Würzburg, Germany

MPI für Festkörperforschungb,

Heisenbergstr. 1, D-70506 Stuttgart, Germany

Received April 14, 1998

Keywords: Synthesis design / Sulfur heterocycles / Electron transfer / MO calculations / Electrochemistry

Starting from tetrahydrothiopyran-4-one (**4d**) a rational eight-step synthesis of **3a** has been developed with 25 % overall yield. This route passes H_4 -**3a** and H_2 -**3a** which are compared with **3a** and its dithione **3b** by IR, UV/Vis, 13 C-

NMR spectra, redox behavior, and crystal structure (H_4 -3a and 3a). The very low solubility of 3a and 3b prevented further reactions.

In a group of scientists looking for new organic materials with conducting or even magnetic properties^[3] we proposed the then unknown system 3. The specific combination of two thiopyrone moieties promised both reversal oxidation and reduction, backed by MO calculations (vide infra). System 3, especially 3b, carries two opposite chelating units which possibly could form polymeric metal chelates.

Exploiting the chemistry of [1,2]dithiol[4,3-c][1,2]dithioldithione (4) in an unusual reaction sequence E. Fanghänel recently arrived at 3 albeit with ca. 7% overall yield starting from 5. [4][5] The crucial step of this synthesis includes the decarboxylation of a 3-dicarboxylic acid under rather harsh conditions. [5] Therefore, substituted systems of 3 may be accessible with difficulties by that route.

We now present a different protocol with 25% overall yield and the principal possibility for incorporating definite substituent patterns into 3. Besides some closely related intermediates, calculations and cyclovoltammograms will be reported.

A rational approach to 3 is primarily offered by two routes:

- 1. Route A starts with precursors of type 1, carrying already the central backbone of 3 from which both rings have to be constructed at the same time. Despite of easily accessible precursors 1 and promising analogies in the literature, we were unable to approach 3 by this seemingly simple route. [2]
- 2. We therefore turned to route B which requires only the addition of one ring onto a preformed (hydro)thiopyranone unit. After some dead ends, this approach finally led to a successful eight-step synthesis of 3. The general problem consists in an unfavorable polarization of the double bond

in the starting dihydrothiopyrone 2 for most ring-closing reactions (Scheme 1).

Scheme 1

Synthesis of System 3

As crucial intermediate in the reaction sequence to **3a** we headed for **10** which was expected to form the basic skeleton of **3** by reaction with hydrogen sulfide. For that purpose we wanted to exploit the stabilization of carbanions by sulfur^[6] and the higher acidity of sp²- compared to sp³-C-H bonds.^[7] Therefore, we started from the commercially available tetrahydrothiopyranone **5** which is smoothly transformed by *N*-chlorosuccinimide and pyridine to dihydrothiopyranone **6**.^[8] In **6** the oxo group had to be protected by acetalization. This standard procedure is known to be unreliable with cyclohexenone.^[9] Correspondingly, the formation of the unknown acetal **8** proceeded unsatisfactorily with proved catalysts like *p*-toluenesulfonic acid^[10] and strong acidic ion exchangers^[11] but afforded **8** in nearly quantitative yield with the distannoxane **7** as a catalyst.^[12]

Scheme 2. Synthetic route to 3a and 3b

(in DMF vs. Ag/AgCl; Fc = +0.40 V)

This very simple procedure even surpassed the reaction of **6** with glycol bis(trimethylsilyl)ether and acid catalysts (**8**: 72%).^[13]

In 2H-thiopyrane one of the two double bonds is known to be selectively α -lithiated by LDA or n-BuLi/TMEDA. [14] With 8 the best results were obtained with nBuLi in THF. The following trimethylstannylation afforded 9 with 92-98% yield compared to 53-78% for tributylstannylation in accordance with similar observations in the literature. [15]

Coupling of **9** with acrylic acid chloride^[16] proceeded in a clean reaction (DC monitoring) to **10**. However, 85% of the highly unstable "divinyl ketone" **10** could only be isolated by very careful handling. Since in the consecutive reaction hydrogen sulfide adds smoothly onto **10** (81% isolated yield of **11** from **10**) the crude ketone **10** was immediately transformed into **11**.

Much to our surprise 11 resisted deacetalization with a variety of reagents [2 M HCl in THF^[17], p-toluenesulfonic acid in acetone^[18], H₂SO₄ (15%) on silica gel in dichloromethane^[19], LiBF₄ in wet acetonitrile^[20]]. We therefore introduced first the central double bond into 11 by reaction with NCS and pyridine (\rightarrow 12) according to a procedure developed for tetrahydrothiopyran-4-one, albeit under different conditions.^[8] Dehydrogenation of 11 occurred with complete chemoselectivity. Interestingly, this small variation allowed smooth deacetalization to H₄-3a, especially with the already mentioned sulfuric acid/silica gel reagent.^[19]

Dehydrogenation of 11 was first again performed with NCS/pyridine. [8] But despite long reaction times and higher

temperature, always a mixture of H_2 -3a and 3a resulted in reasonable yields. This unexpected behavior may be due to the low solubilities of H_2 -3a and 3a in dichloromethane. Nevertheless, both H_4 -3a and H_2 -3a are welcome products for comparison with 3a. For smooth dehydrogenation of H_4 -3a to 3a the iodine/DMSO/sulfuric acid mixture^[21] turned out to be the reagent of choice.

Starting from tetrahydrothiopyranone **5** the new protocol provides **3a** with an overall yield of 25%. With the Lawesson reagent^[22] **3a** was transformed into **3b** with 83% yield by improving the literature conditions (25% **3b**).^[5] Bisthione **3b** and to a lesser extend **3a** suffer from extremely low solubilties in all common solvents but could be recrystallized from propylenecarbonate. These unforeseen properties prevent the recording of ¹³C-NMR spectra of **3b** and hampered any further chemical transformations,^[2] including those to metal chelates or DCNQI derivatives.^[23] Therefore, we encourage other groups to approach (alkyl-)substituted **3a** and **3b** by adoption of the disclosed route.

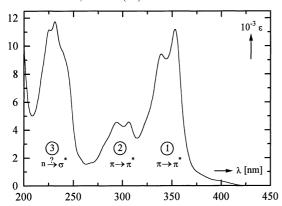
Physical Properties of Compounds with a Thiopyrano-[3,2-b]thiopyranone Skeleton: IR and ¹³C-NMR Spectra (>C=O)

The derivatives collected in Table 1 (see also Scheme 2) each contain carbonyl groups in the same molecular framework. Differences in the 13 C-NMR and IR signals therefore must be mainly ascribed to the number of conjugated double bonds. By moving from **11** to **12** the normal shift of both signals from saturated to α,β -unsaturated ketones ist observed. However, with the unsaturated 1,4-diketone moi-

Multistep Redox Systems, LXVI FULL PAPER

ety in H₄-3a the ¹³C-NMR signal is not changed, whereas the IR frequency drops by 20 cm⁻¹ to $\tilde{v}=1655$ cm⁻¹. Consequently, these bands are conserved for one of the carbonyl groups in H₂-3a. However, the newly formed thiopyranone unit provokes a definite shift of both signals to lower wave numbers. Interestingly, these frequencies remain constant after introduction of the last double bond in 3a. Comparison with thiopyran-4-one [¹³C(C=O): $\delta=179.6, ^{[24]}\tilde{v}=1610$ cm⁻¹, ^{[5][24]} displaying a rather strong weight of a bipolar resonance structure ($\mu=3.96$ D^[25]], a similar quadrupol moment is to be expected for 3a and 3b. These may contribute to the extremely high melting points of both 3a (338°C) and 3b (224°C, dec.)^[26] and hence to their very low solubilities.

Table 1. 13 C-NMR (δ [ppm]) and IR (\tilde{v} [$^{-1}$]) signals of various thiopyrano[3,2-b]thiopyranone derivatives


	11	12	H ₄ -3a	H ₂ -3a	3a
¹³ C ^[a]	204.4	191.7	192.8	192.8 178.9	179.1 ^[b]
IR ^[c]	1695 ^[d]	1675 ^[d]	1655	1660 1590	1595

 $^{^{[}a]}$ In CHCl₃. - $^{[b]}$ In CDCl₃/CF₃SO₃H. - $^{[c]}$ In KBr. - $^{[d]}$ Film.

UV/Vis Spectra

Compounds 3a and 3b as well as their hydrogenated derivatives H_2 -3a and H_4 -3a show typical UV/Vis spectra as demonstrated for $3a^{[27]}$ in Figure 1.

Figure 1. UV/Vis absorption bands of thiopyrano[3,2-b]thiopyran-4,8-dione (3a) in acetonitrile

For identification of the different exitation states semiempirical calculations based on configuration interactions (CI)^[28] have been performed in the recent version of Clark and Chandrasekhar.^[29] The permutations were restricted to eight different orbitals from HOMO -3 and LUMO +3. Since semiempirical parameters for sulfur in organic compounds are not reliable, the ground-state geometries were evaluated by an ab initio calculation applying a $6-31G^*$ basis set.^[30]

Experimental and calculated absorption bands are collected in Table 2 together with extinction coefficients and calculated oscillator strengths. Figure 2 presents the orbital symmetries and coefficients of HOMO -1 to LUMO +1.

Table 2. Experimental and calculated UV/Vis data for some thiopyrano[2,3]thiopyran derivatives

	$\lambda_{max} \; [nm] \; (log \; \epsilon)^{[a]}$	λ _{calc.} [nm]	Osc. strength
H ₄ -3a	431 (3.78)	364, 347	0.211, 0.168
	212 (4.01)	209	0.301
H ₂ -3a	380 (3.82) 292 (3.66), 282 (3.62) 221 (4.07)	="	
3a	353 (4,18, 339 (4.11)	349	0.167
	305 (3.77), 293 (3.76)	283	0.722
	232 (4.19), 226 (4.16)	218	0.046
3b	462 (4.15)	395	0.333
	300 (4.20)	334, 265	0.752, 0.944

[[]a] In MeCN.

According to Table 1 the calculated absorpiton maxima do not match the experimental ones very well. However, the three absorption ranges of **3a** for instance (Figure 1) can clearly be assigned and therefore be connected to specific electron transitions.

The longest wavelength absorption > 350 nm observed with all derivatives of Table 1 (calcd. $\lambda_{\text{max}} = 349$ nm) doubtlessly arises from a π - π ^x excitation from HOMO (A_4) to LUMO (B_9). Hereby electron density is shifted from the two endocyclic sulfur atoms to the central double bond. Consequently, the same type of excitation is found in H₄-3a where the bathochromic shifts result from a somewhat higher HOMO energy. The strong bathochromic shift $3a \rightarrow 3b$, however, is caused by a much lower LUMO energy in the bis(thione) 3b.

The second absorption range between 280 and 330 nm (calcd. 283 nm) can again be assigned to a π - π^x transition, however, from HOMO to LUMO +3 (Scheme 3). This way, electron density from the endocyclic sulfur atoms is completely transferred to the two outside double bonds of 3a. Therefore, this transition is missing if these double bonds are hydrogenated (H_4 -3a).

The third group of absorption bands of highest energy (210-230 nm, calcd. 283 nm) comprises exclusively s, p_x and p_y orbitals. Therefore, they are connected to a HOMO -2 (Ag) \rightarrow LUMO +2 (B_4) transition (Scheme 3). However, the B_4 symmetry cannot be safely assigned since the strong orbital coefficients in the centre of the excited molecule points more to a σ^* state of this orbital. According to Scheme 3 a strong charge transfer occurs from the exo atoms (O in a_1 , S in a_2) to the endocyclic sulfur atoms.

It is not clear whether the d orbitals of sulfur are involved because they are simulated by s and p orbitals in the computer program. Since the calculated transition of $\lambda_{max}=218$ nm for **3a** is shifted to $\lambda_{max}=265$ nm for **3b** this absorption band may well be hidden under the $\pi\to\pi^x$ transition at 320 nm (observed). This bathochromic shift could explain why **3b** shows only two absorption bands in contrast to **3a**.

Cyclovoltammetry

Contrary to our earlier expectations both **3a** and **3b** could not be oxidized electrochemically. On reduction, how-

Scheme 3. Orbital symmetries and coefficients for the calculated UV transitions $\lambda_{max}=283$ nm and $\lambda_{max}=218$ nm of 3a

ever, two peaks are observed similar to H_4 -3a and H_2 -3a (Table 3). The addition of the first electron occurs reversible for all systems with differences of the reduction and oxidation peaks close to 59 mV calculated for a one-electron transfer. The potential E_2 of the unsaturated dione moiety in H_4 -3a is shifted negative twice by 70 mV on introducing double bonds to H_2 -3a and 3a. As to be expected, 3b is more easily reduced than 3a ($\Delta \approx 700$ mV). A second electron is much more difficult but not reversibly to attach (Coulomb repulsion) creating large semiquinone formation constants $K_{\rm SEM}$ of 10^9 to 10^{11} .

Table 3. Reduction potentials $(E_1, E_2 [V])$, number n of electrons transferred and semiquinone constants $K_{\rm SEM}$ of some thiopyrano[2,3-b]thiopyrandiones determined by cyclic voltammetry in DMF (0.1 M TBAPF₆), Fe = 0.39 V v. SCE

	<i>E</i> ₂ [V]	n	E_1 [V]	n	$K_{ m SEM}$
H ₄ -3a H ₂ -3a 3a 3b	-1.51 -1.58 -1.65 -0.97	0.65 0.69 0.66 0.79	ca2.17 ^[a] -2.25 ^[b] -2.27 ^[b] -1.54	0.18 0.31 0.36 0.74	ca. 2.3×10^{11} ca. 3.2×10^{10} 4.6×10^{9}

 $^{^{[}a]}$ Irreversible electron transfer, peak potential broad. - $^{[b]}$ Quasi-reversible electron transfer.

Crystal Structures of H₄-3a and 3a

On crystallization of H₄-3a from ethanol and 3a from propylenecarbonate single crystals for X-ray analysis could be grown.

The structure of 3a reveals that all bonds connected to the central double bond (C4-C4A) are slightly stretched compared to the other side of the molecule. Due to the puckered $-CH_2-CH_2$ moiety (C2-C3) the structure of H_4 -3a is disordered with regard to C2. The molecular diagram in Figure 2 therefore pictures an averaged position for C2. The overall structure can be described as a *trans*-configurated, unsaturated 1,4-diketone documented by the short C3-O3 and C4-C4A distances. Compared to the single bond C2-C3 the C3-C4 bond is shortened only by 1.2 pm. The sulfur atom seems not to influence the conjugated π system.

This situation is definitely changed in the fully conjugated heterocycle 3a: Both the C3-O3 bond (+ 2.8 pm) and the C4-C4A bond (+ 1.5 pm) are stretched and consequently the C3-C4 bond is shortened (- 1.0 pm) but even so the S1-C4A bond (- 2.1 pm). In connection with the even shorter bonds at the unsubstituted side of 3a these alterations compared to H_4 -3a clearly signalize a definite

Figure 2. Calculated orbital symmetries and coefficients from HOMO -1 to LUMO +1 for H₄-3a, 3a, and 3b

charge delocalization from S1 to O3. Therefore, a quadruple character has to be attributed to 3a.

These conclusions are corroborated by comparison with 4*H*-thiopyranone (13).^[24] Its structure closely resembles that of 3a and not that of H₄-3a (Figure 3). Interestingly the C–O bond lengths in 13 and 3a are the same, although in 13 all bond lengths are shortened bei 1–2 pm. The dipolar, partial aromaticity of 13 is well established.^[31] In the tetraethyl tetracarboxylate of 3a the bonds O3–C3, C3–C4, C4–C4A and C4A–S1 are shortened by 1–2 pm whereas the others are stretched by 1–3 pm.^[32]

Reactions of 3a and 3b

Experiments to transform 3a into its DCNQI derivative with the very broad applicable reagent bis(trimethylsilyl)-carbodiimide/titanium tetrachloride even under forcing conditions^[33] were not successful. Similarly, no CT complex could be isolated from the acceptor 3b and the strong donor N,N'-dimethylphenazine ($E_1 = +0.14 \text{ V vs. Ag/AgCl})^{[34]}$.

In a series of experiments for the preparation of radical anion salts we tried to overcome the low solubility of 3b by treating its suspension in tetrahydrofuran with lithium naphthalide. Indeed, a dark solution was formed from which a black solid precipitated displaying a strong ESR signal. However, treating this mixture with soluble salts of Cu^+ , Ag^+ , Zn^{2+} , Ni^{2+} , Fe^{2+} , Mo^{3+} afforded only undefined material with powder conductivities of 10^{-6} to 10^{-8} Scm⁻¹.

From adequately substituted **3a** and **3b** with better solubilities these chemical reactions could well take a definite course

Financial support by the *Fonds der Chemischen Industrie*, Frankfurt/Main, the *Stiftung Volkswagenwerk* and especially by the *BASF AG* (Projekt 03 M 4067 6: Polymere mit außergewöhnlichen Eigenschaften im Hinblick auf Ferromagnetismus) is highly acknowledged. We are grateful to Prof. Dr. *D. Stalke* for providing the X-ray structures of Figure 3.

Experimental Section

M.p.: Kofler microscope (Fa. REICHERT) and differential thermoanalysis (DuPONT DE NEMOURS Thermal Analyser TA 990). – IR: Perkin Elmer 1420. – UV/Vis: Perkin Elmer 330. – 1 H and 13 C NMR: Bruker AC 200, AC 250,WM 400 SY. – CV: Pontentiostat (Amel 553), programmer EG & G PARC 175. Pt electrode (\varnothing 1.0 mm), Ag wire for reference, 0.1 m 1 Bu, PF $_{6}$ and 1 C m substrate in carefully purified DMF, 1 C meCN). – Solvents were purified according to standard procedures. Solutions of 1 BuLi were titrated. $^{[35]}$ Flash chromatography (FC) $^{[36]}$ was performed on silica gel Woelm (1 C) – 1 C meCN).

4H-5,6-Dihydrothiopyran-4-one (6)^[5]: To tetrahydrothiopyran-4-one (37]</sup> (5; Aldrich; 13.0 g, 112 mmol) and pyridine (9.0 ml, 112 mmol) in dichloromethane (DCM) (200 ml) was added at 0°C NCS (15.7 g, 118 mmol) in portions. After stirring (2 h), the solvent was removed and the oily residue treated with *tert*-butyl methyl ether

Figure 3. Comparison of X-ray structures of 4H-thiopyranone (13)[24], 3a and H₄-3a (average position for C2)[39]

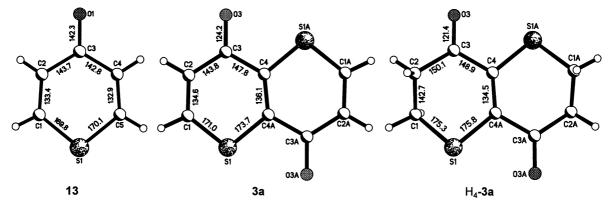


Table 4. X-ray data^[39]

compound	3a	H ₄ -3a		
empirical formula	$C_8H_4S_2O_2$	$C_8H_8S_2O_2$		
molecular mass	196.25	200.28		
a [pm]	390.3(1)	471.8(1)		
b [pm]	781.1(3)	782.4(1)		
c [pm]	1244.4(4)	1178.1(1)		
β [deg]	97.89(3)	100.206(8)		
$V[pm^3]$	375.8(3)×10 ⁶	428.02(7)×10 ⁶		
Z	2			
d(calcd) [g×cm ⁻³]	1.743	1.554		
crystal system	mone	oclinic		
space group	$P2_1/n$	$P2_1/a$		
diffractometer	Siemens P4			
radiation	Mo I	Κα		
monochromator	grapl	hite		
crystal size [mm]	$0.2 \times 0.9 \times 0.05$	0.1 x 0.3 x 3.2		
data collection mode	ω - s	can		
theta range [deg]	1.75	- 27.5		
recip. latt. segment	$h = 0 \rightarrow 5$	$0 \rightarrow 6$		
	$k = 0 \rightarrow 10$	$0 \rightarrow 10$		
	$l = -16 \rightarrow 16$	-15 → 15		
no. refl. measd.	1053	1184		
no. unique refl.	856	982		
no. refl. $F > 3\sigma(F)$	764	912		
lin. abs. coeff. [mm ⁻¹]	0.65	0.57		
abs. correction	ψ-scan			
solution by	direct phase determination			
method of refinement	Full-Matrix LSQ. Hydrogen positions			
	of riding model with fixed isotropic U			
data-to-parameter ratio	13.89	16.29		
R, R_{w}	0.049, 0.053	0.079, 0.091		
weighting scheme	scheme $w = 1/\sigma^2(F)$			
largest difference peak	0.56 eÅ ⁻³	0.53 eÅ ⁻³		
largest difference hole	0.26 eÅ ⁻³	0.41 eÅ ⁻³		
program used	Siemens SHELXTL PLUS			

(MTB) (200 ml) until on stirring the succinimide crystallized. After filtration and removal of MTB, the dark yellow oil was purified by FC [petroleum ether (PE)/MTB, 1:1], yielding **6** (12.0 g, 94%, ref. [8] 100%) as a yellow oil. - ¹H NMR (250 MHz, CDCl₃): $\delta = 2.74$ (AB part of an ABXX' system, 5-H₂), 3.24 (AB part of an ABXX' system, 6-H₂), 6.18 (d, $J_{3,2} = 10.1, 3$ -H), 7.29 (dt, $J_{2,3} = 10.1, J_{2,6} = 0.8, 2$ -H). - IR (film) $\tilde{v} = 3020$ cm⁻¹ (w), 2915 (w), 1670 (s), 1550 (m), 1360 (m), 1190 (m), 1130 (m), 785 (m), 750 (m).

4H-5,6-Dihydro-4,4-ethylendioxythiopyran (8): Azeotropic distillation of 6 (12.0 g, 105 µmol), ethylene glycol (63.3 g, 50 ml, 1.05 mol) and 1,1,3,3-tetra-n-butyl-1-hydroxy-3-isothiocyanatodistannoxane^[12] (7) (2.93 g, 5 mol-%), and benzene (500 ml) was performed for 5 d by adaption of ref.^[38] After separation of excess glycol, the benzene layer was dried with MgSO₄. The solvent was removed and the residue filtered through a pad of deactivated silica gel (7.5% conc. NH₃, PE/MTB, 2:1) afforded a pale yellow oil of **8** (15.9 g, 96%). - ¹H NMR (250 MHz, CDCl₃): $\delta = 2.10$ (AB part of an ABXX' system, 5-H₂), 3.01 (AB part of an ABXX' system, 6-H₂), 4.01 (AB part of an AA''BB'' system, OCH₂CH₂O), 5.67 (d, $J_{3,2} = 10.4$, 3-H), 6.34 (dt, $J_{2,3} = 10.4$, $J_{2,6} = 0.8$, 6-H). – ¹³C NMR (63 MHz, CDCl₃): $\delta = 24.7$ (t, C-6), 32.8 (t, C-5), 64.6 $(t, 2 \times OCH_2), 103.4 (s, C-4), 121.5 (d, C-3*), 126.2 (d, C-2*);$ *assignments exchangeable. – IR (KBr): $\tilde{v} = 3030 \text{ cm}^{-1}$ (w), 2815 (m), 2775 (m), 1605 (m, C=C), 1165 (m), 1105 (s), 1020 (m), 885 (m). - C₇H₁₀O₂S (158.2): calcd. C 53.14, H 6.37, S 20.27; found C 53.14, H 6.24, S 19.98.

4H-5,6-Dihydro-4,4-ethylendioxy-2-trimethylstannylthiopyran (9): At −70°C nBuLi (111 mmol, 2.20 м in hexane) was added dropwise to a solution of 8 (15.9 g, 101 mmol) in THF (250 ml). After stirring (4.5 h) at -65°C, the mxiture was cooled to -78°C and chlorotrimethylstannane (22.1 g, 111 mmol) in THF (50 ml) slowly added. After warming to ambient temperature, MTB (500 ml) was added, the mixture washed with H_2O (2 × 200 ml) and dried (Na₂SO₄). After evaporation of the solvent FC of the crude 9 (deactivated SiO₂, 7.5% NH₃, PE/MTB, 6:1) yielded 9 (31.8 g, 98%) as a yellow oil. - ¹H NMR (250 MHz, CDCl₃): $\delta = 0.24$ [s, Sn(CH₃)₃; tin satellites at $\delta = 0.12$ and 0.34], 2.07–2.12 (AA' part of an AA'XX' system, 5-H₂), 2.96-3.01 (AA' part of an AA'XX' system, 6-H₂), 3.95-4.09 (AA'BB' system, OCH₂CH₂O), 5.69 (s, 3-H; tin satellite at δ = 5.56 and 5.81). - ¹³C NMR (63 MHz, CDCl₃): $\delta = -9.36$ [q, Sn(CH₃)₃], 26.4 (t, C-6), 32.4 (t, C-5), 64.5 (t, OCH₂CH₂O), 102.8 (s, C-4), 127.3 (d, C-3), 141.2 (s, C-2). -IR (film): $\tilde{v} = 2960 \text{ cm}^{-1}$ (m), 2910 (m), 2900 (m), 2860 (m), 1550 (w), 1415 (w), 1205 (m), 1155 (m), 1095 (s), 1015 (m), 995 (m), 940 (w), 885 (m), 765 (s). $-C_{10}H_{18}O_2SSn$ (321.0): calcd. C 37.41, H 5.65, S 9.99; found C 37.49, H 5.46, S 9.71.

4H-5,6-Dihydro-4,4-ethylendioxy-2-vinylcarbonylthiopyran (10): A mixture of stannane 9 (23.5 g, 73.5 mmol), acryloyl chloride (7.95 g, 7.2 ml, 87.9 mmol), and (Ph₃P)₂PdCl₂ (1.54 g, 3 mol-%) in DCM (120 ml) and molecular sieve (4 Å, ca. 2 g) was stirred at ambient temperature (21 h). After addition of MTB (150 ml), the mixture was washed with sat. NaHCO₃ (2 \times 100 ml), H₂O (2 \times 100 ml) and dried (Na₂SO₄). The solution was concentrated (\rightarrow 30 ml) at 0°C and 70 hPc. FC (PE/MTB, 1:1) yielded a solution which on concentration (\rightarrow 30 ml) was ready for the reaction with H₂S. From a small sample the solvent was removed and NMR spectra were taken immediately (no elemental analysis from the polymerizing 10). – ¹H NMR (250 MHz, CDCl₃): $\delta = 2.09$ (AB part of an ABXX' system, 5-H₂), 3.03 (AB part of an ABXX' systm, 6-H₂), 4.07 (AB part of an AA'BB' system, OCH₂CH₂O), 5.84 (dd, J_{cis} = 10.5, $J_{gem} = 1.7$, 3'- H_{cis}), 6.38 (dd, $J_{trans} = 17.0$, $J_{gem} = 1.7$, 3'- H_{trans} , 3'- H_{trans}), 6.55 (s, 3-H), 6.91 (dd, $J_{trans} = 17.0$, $J_{cis} = 10.5$, 2'-H). $- {}^{13}$ C NMR (63 MHz, CDCl₃): $\delta = 24.1$ (t, C-6), 32.1 (t, C-5), 64.9 (t, OCH $_2$ CH $_2$ O), 103.9 (s, C-4), 129.6 and 130.0 (2 \times d, C-3 and C-2'), 130.4 (t, C-3'), 141.1 (s, C-2), 188.1 (s, C-1').

4H,8H-2,3,6,7,4a,8a-Hexahydro-8,8-ethylendioxythiopyrano[3,2b]thiopyran-4-one (11): To a saturated solution of H₂S in MeOH (250 ml) and butyltrimethylamminium hydroxide (0.40 ml, 40% in MeOH) the solution of vinyl ketone 10 (vide supra) was added. After stirring (30 min), excess H₂S was expelled by N₂. The precipitate formed was isolated: trans-11 (5.21 g, 29% from ethanol), colorless needles with m.p. 174°C. The filtrate was concentrated, dissolved in DCM (200 ml), washed with H2O (100 ml) and dried (MgSO₄). After removal of the solvent, FC (PE/MTB, 1:2) yielded 11 (mostly cis-11, 10.2 g, 57%). Overall yield of 11 = 15.4 g (86%). Crystallization from small amounts of MTB afforded pure cis-11, colorless needles, m.p. 100°C. - trans-11: ¹H NMR (250 MHz, CDCl₃): $\delta = 1.82$ (ddd, $J_{gem} = J_{7-\text{Hax},6-\text{Hax}} = 13.4$, $J_{7-\text{Hax},6-\text{Heq}} = 3.7$, $7-\text{H}_{ax}$), 2.11 (ddd, $J_{gem} = 13.4$, $J_{7-\text{Heq},6-\text{Heq}} = 3.7$, $J_{7-\text{Heq},6-\text{Hax}} = 3.7$ 2.7, 7- H_{eq}), 2.56 (ddd, $J_{gem} = 13.7$, $J_{6-Heq,7-Hax} = 3.7$, 6- H_{eq}), 2.71-3.06 (m, $2-H_2$, $3-H_2$, $6-H_{ax}$), 3.58 (d, $J_{8a,4a} = 11.6$, 8a-H), 3.97-4.21 (m, OCH₂CH₂O), 4.28 (d, $J_{4a,8a} = 11.6$, 4a-H). $- {}^{13}C$ NMR (50 MHz, CDCl₃): $\delta = 24.2$ and 27.0 (2 × t, C-2 and C-6), 37.3 and 43.6 (2 \times t, C-3 and C-7), 58.5 and 58.6 (2 \times d, C-4a and C-8a), 65.8 and 65.9 (2 \times t, OCH₂CH₂O), 107.9 (s, C-8), 204.4 (s, C-4). – IR (film): $\tilde{v} = 3900 \text{ cm}^{-1}$ (m), 3880 (m), 1695 (s), 1255 (m), 1157 (m), 1142 (m), 1100 (m), 1050 (m), 893 (m), 745 (w). cis-11: ${}^{1}\text{H}$ NMR (250 MHz, CDCl₃): $\delta = 1.72$ (ddd, $J_{gem} = 13.7$, $J_{7ax,6ax} = 11.3$, $J_{7ax,6eq} = 3.7$, 7-H_{ax}), 2.13 (ddd, $J_{gem} = 13.7$,

 $J_{7\text{eq,6eq}} = 5.2$, $J_{7\text{eq,6ex}} = 3.1$, 7-H_{eq}), 2.52-2.62 (m, 3-H^1), 2.72-2.98 (m, $2-H^1$, $3-H^2$, $6-H_{eq}$), 3.09 (ddd, $J_{gem} = 13.7$, $J_{6ax,7ax} = 13.7$) 11.3, $J_{6ax,7eq} = 3.1$, 6-H_{ax}), 3.22-3.30 (m, 2-H²), 3.73 (d, $J_{8a,4a} =$ 5.2, 8a-H), 3.86-3.96 (m, $OCH^1H^2CH_2O$), 4.01-4.23 (m, 4a-H, $OCH^1H^2CH_2O$). - $C_{10}H_{14}O_3S_2$ (246.3): calcd. C 48.76, H 5.73, S. 26.03; found C 48.59, H 5.66, S. 25.80.

4H,8H-2,3,6,7-Tetrahydro-8,8-ethylendioxothiopyrano[3,2]thiopyranone (12): At 0°C NCS (918 mg, 6.88 mmol) was slowly added to cis/trans-11 (1.54 g, 6.25 mmol) and pyridine (0.56 ml, 6.88 mmol) in DCM (25 ml). After stirring (14 h) at 0°C, DCM (30 ml) was added, the mixture washed with H_2O (2 \times 30 ml) and the solution dried (MgSO₄). Removal of the solvent and FC (PE/MTB, 1:2) yielded 12 (970 mg, 64%) as a yellow oil which solidified on standing. $- {}^{1}H$ NMR (250 MHz, CDCl₃): $\delta = 2.09-2.14$ (AA' part of an AA'BB' system, 7-H2), 2.81-2.86 (AA' part of an AA'XX' system, 3-H₂), 2.99-3.04 (AA' part of an AA'XX' system, 6-H₂), 3.09-3.15 (AA' part of an AA'XX' system, 2-H₂), 4.02-4.30 (AA'BB' system, OCH₂CH₂O). - ¹³C NMR (63 MHz, CDCl₃): δ = 22.1, 25.7, 33.0, 38.5 (4 × t, C-2,3,6,7), 66.4 (t, OCH₂-CH₂O), 104.6 (s, C-8), 128.4 (s, C-4a), 146.6 (s, C-8a), 191.7 (s, C-4). – IR (film): $\tilde{v} = 2950 \text{ cm}^{-1}$ (w), 2920 (w), 2880 (w), 1675 (vs, C=O), 1535 (w, C=C), 1250 (m), 1195 (s), 1110 (s), 1025 (s), 955 (s), 900 (m), 795 (m). $-C_{10}H_{12}O_3S_2$ (244.3): calcd. C 49.16, H 4.95, S 26.25; found C 49.01, H 4.99, S 25.28.

4H,8H, Tetrahydrothiopyrano [3,2-b]thiopyran-4,8-dione (H₄-3a): According to the procedure in ref. [19] silica gel (4.0 g) and H₂SO₄ (15%, 0.33 ml) in DCM (10 ml) were stirred until a homogenous mixture was formed. Acettal 12 (970 mg, 3.97 mmol) in DCM (5 ml) was added and the mixture stirred at ambient temperature (21 h), then (1 h) after addition of NaHCO₃ (1.5 g). After filtration, careful washing with DCM, and evaporation of the solvent, crude H₄-3a remains. From EtOH bright orange needles of H₄-3a (667 mg, 84%), m.p. 224–226°C. – 1H NMR (250 MHz, CDCl₃): δ = 2.87-2.92 (m, $3-H_2$ and $7-H_2$), 3.11-3.17 (m, $2-H_2$, $6-H_2$). - ^{13}C NMR (63 MHz, CDCl₃): $\delta = 24.1$ (t, C-2 and C-6), 38.4 (t, C-3 and C-7), 140.6 (s, C-4a and C-8a), 192.7 (s, C-4 and C-8). - IR (KBr): $\tilde{v} = 1655 \text{ cm}^{-1} \text{ (vs, C=O)}, 1160 \text{ (w)}, 1128 \text{ (m)}, 915 \text{ (w)}, 860$ (w), 800 (w). – UV (MeCN): λ_{max} (lg $\epsilon)$ = 431 nm (3.78), 212 (4.01). - C₈H₈O₂S₂ (200.3): calcd. C 47.98, H 4.03, S 32.02; found C 47.97, H 3.86, S 31.86.

4H,8H-6,7-Dihydrothiopyrano [3,2-b]thiopyran-4,8-dione (H₂-3a): NCS (125 mg, 934 mmol) was added to a solution of H₄-3a (85 mg, 424 µmol) in DCM (2 ml) and pyridine (70 µl, 848 µmol) at 0°C. The mixture was stirred (18 h, 17°C), diluted with DCM (30 ml), washed with 2 N HCl (2 \times 15 ml), and H₂O (2 \times 15 ml) and dried (MgSO₄). After evaporation of the solvent, the product (100 mg) was purified by FC (DMC/MeOH, 99:1), yielding 2H-3a (37 mg, 44%) as an ocher-colored powder (m.p. ca. 181°C, DTA) and a second fraction: 3a (20 mg, 24%) pale yellow microcrystalline powder. – H_2 -3a: ¹H NMR (250 MHz, CDCl₃): δ = 2.99 (m, 7- H_2), 3.28 (m, 6- H_2), 6.98 (d, J = 10.4, 3-H), 7.97 (d, J = 10.4, 2-H). $- {}^{1}$ H NMR (250 MHz, [D₆]DMSO): $\delta = 2.87 - 2.92$ (m, 3-H₂ and 7-H₂), 3.11-3.17 (m, $2-H_2$, $6-H_2$). - ^{13}C NMR (63 MHz, CDCl₃): $\delta = 25.5$ (t, C-6), 38.0 (t, C-7), 125.7 (t, C-3), 136.0 (s, C-4a), 140.4 (t, C-2), 152.8 (s, C-8a), 178.9 (s, C-4), 192.8 (s, C-8). – IR (KBr): $\tilde{v} = 3035 \text{ cm}^{-1}$, 1660 (s, C=O), 1590 (vs, C=O), 1490 (w, C=C), 1145 (m), 1135 (m), 920 (m), 860 (w), 820 (m). - UV (MeCN): λ_{max} (lg ϵ) = 380 nm (3.82), 292 (3.66), 282 (3.62), 221 (4.07). $-C_8H_4O_2S_2$ (196.31): calcd. C 48.46, H 3.05, S 32.35; found C 48.20, H 2.98, S 32.22.

4H,8H-Thiopyrano[3,2-b]thiopyrandione (3a)[5]: In DMSO (10 ml) conc. H₂SO₄ (20 μl, 10 mol-%), iodine (90 mg, 10 mol%), and

 H_4 -3a (710 mg, 3.54 mmol) were heated to 100 °C for 3 h. From the cooled solution the precipitate was removed and washed with acetone (2 \times 5 ml) and MTB (2 \times 10 ml). Pale yellow needles of **3a** (550 mg, 79%), m.p. 338°C (DTA), in ref. [5] no m.p. is reported. From propylenecarbonate, pale yellow needles with a metallic luster, m.p. 343°C (DTA). The physical data coincide nearly with those already published^[5]. - ¹H NMR (250 MHz, [D₆]DMSO): $\delta = 7.14$ (d, J = 10.4, 2-H and 6-H), 8.69 (d, J = 10.4, 3-H and 7-H). – ¹H NMR (250 MHz, CF₃SO₃H/CDCl₃): δ = 7.53 (d, J = 10.4, 3-H and 7-H), 8.67 (d, J = 10.4, 2-H and 6-H). $- {}^{13}$ C NMR (250 MHz, $CF_3SO_3H/CDCl_3$): $\delta = 124.7$ (d, C-2 and C-6), 146.1 (s, C-4' and C-8'), 147.1 (d, C-3 and C-7), 179.1 (s, C-4 and C-8). - IR (KBr): $\tilde{v} = 3041 \text{ cm}^{-1}$ (w), 1595 (vs, C=O), 1145 (m), 838 (m), 669 (w). – UV (MeCN): λ_{max} (lg ϵ) = 353 nm (4.18), 339 (4.11), 305 (3.77), 293 (3.76), 232 (4.19).

4H,8H-Thiopyrano[3,2-b]thiopyran-4,8-dithione (3b)^[5]: Compound 3a (101 mg, 515 µmol) and Lawesson reagent (250 mg, 617 mmol) were suspended in toluene (20 ml) and heated to reflux (2 h). The brownish black solid was isolated and crystallized from propylenecarbonate (13 ml) yielding dark green needles with metallic luster of **3b** (102 mg, 85%, ref. [5] 25%). M.p. 224°C (DTA, ref.^[5] no data). The spectroscopic data agree well with those reported in ref. [5] – 1H NMR (250 MHz, CDCl₃): δ = 7.12 (d, J = 10.4, 3-H and 7-H), 8.15 (d, J = 10.4, 2-H and 6-H). – IR (KBr): $\tilde{\nu} \, = \, 1512 \, \, cm^{-1} \, \, (s, \, C{=}C), \, 1167 \, \, (m), \, 1145 \, \, (s), \, 1130 \, \, (m), \, 930 \, \, (w),$ 785 (m), 645 (w). – UV (MeCN): λ_{max} (lg ϵ) = 462 (4.15), 300 (4.20), 195 (4.25). $-C_8H_4S_4$ (228.4): calcd. C 42.07, H 1.77, S 56.16; found C 42.25, H 1.75, S 55.92.

- [1] Part LXV: S. Hünig, K. Sinzger, M. Kemmer, U. Langohr, H. Rieder, S. Söderholm, H.-U. von Schütz, H.-C. Wolf, *Eur. J. Org. Chem.* **1998**, 1977–1988.
- M. Hemmerling, Ph. D. Thesis, University of Würzburg, 1996. BASF Schwerpunkt-Projekt 03 M 4067 6: Polymere mit außergewöhnlichen Eigenschaften im Hinblick auf Ferromagnetismus. Recent review in this field: P. Day, M. Kurmoo, J. Mater. Chem. 1977, 8, 1291-1295 and references therein.

[4] E. Fanghänel, T. Palmer, J. Kersten, R. Ludwigs, K. Peters, H. G. von Schnering, Synthesis 1994, 1067-1071

- [5] E. Fanghänel, T. Palmer, J. Prakt. Chem. 1995, 337, 680-682. [6] A. Streitwieser, Jr., S.P. Ewing, J. Am. Chem. Soc. 1975, 97, 190. - A. Streitwieser, Jr., J. E. Williams, *J. Am. Chem. Soc.* **1975**, 97, 191.
- [7] Cf. A. Streitwieser, Jr., D. W. Boerth, J. Am. Chem. Soc. 1978, 100. 755-759.
- C. H. Chen, G. A. Reynolds, J. A. Van Allen, J. Org. Chem.
- 1977, 42, 2777–2778.

 [9] T. J. Lu, J. F. Yang, L. J. Sheu, J. Org. Chem. 1995, 66,
- [10] V. K. Kansal, R. J. K. Taylos, J. Chem Soc., Perkin Trans. 1 **1984**, 703-708.
- Cf.: H. Klausener, H. Frauenrath, W. Lange, G. K. Mikhail, S. Schneider, Methoden Org. Chem. (Houben Weyl) 4th ed. 1991, vol. E14a, part 1, p. 143.
- [12] Reagent 7 was equally successful with cyclohexenone: J. Otera, Adv. Detailed React. Mech. **1994**, 3, 167–197.
- This new approach is based on the acetalizations with glycol bistrimethylsilyl ether/CF₃SO₃H: J. R. Hwu, J. H. Wetzel, J. Org. Chem. 1985, 50, 3946–3948, and by glycol/Me₃SiCl in methanol: T. H. Chan, M. A. Brook, T. Chaly, Synthesis 1983, 203–205.
- [14] R. Gräfing, L. Brandsma, Recl. Trav. Chim. Pays-Bas 1974, *97*, 208–210.
- [15] P. Björk, A. B. Hörnfeldt, S. Gronowitz, J. Heterocycl. Chem. **1994**, *31*, 1161–1169.
- [16] Procedure: E. Piers, H. E. Morton, J. Org. Chem. 1979, 44,
- [17] P. A. Grieco, M. Nishizawa, T. Oguri, S. D. Burke, N. Marinovic, J. Am. Chem. Soc. 1977, 99, 5773-5780.
- [18] G. Bauduin, D. Bondon, Y. Pietrasanta, B. Pucci, Tetrahedron **1978**, *34*, 3269-3274.

FULL PAPER

- [19] F. Huet, A. Lechevallier, M. Pellet, J. M. Conia, Synthesis **1978**, 63-65.
- [20] B. H. Lipshutz, B. F. Harvey, Synth. Commun. 1982, 12, 267–277.
- [21] W. Fatma, J. Iqbal, H. Ismail, K. Ishratullah, W. A. Shaida, W. Rahman, *Chem. Ind.* 1979, 315–316; cf. also: N. Furukawa, T. Atasota, T. Aida, S. Oae, J. Chem. Soc., Perkin Trans. 1 1977, 372 - 374
- [22] S. Prabhakar, Synthesis 1984, 829.
- [23] S. Hünig, J. Mater. Chem. 1995, 5, 1469-1479.
- [24] M. D. Detty, H. R. Luss, Organometallics 1992, 11, 2157-2162.
- [25] M. Rolla, P. Franzosini, G. Traverso, M. Senesi, Ann. Chim. Rome 1955, 45, 128-140; Chem. Abstr. 1955, 49, 13779d.
- [26] Determined by differential thermo analysis; melting points are not reported in ref.^[5].
- [27] In ref. [5] virtually the same absorption maxima are reported, however with lower extinction coefficients.
- [28] G. Rauhut, J. Chandrasekhar, A. Alex, B. Beck, W. Sauer, T. Clark, VAMP 5.6.0, Oxford Molecular Limited, Oxford Science Park, Sandfor on Thames, Oxford OX4 4GA, England, 1996.
- ^[29] T. Clark, J. Chandrasekhar, *Isr. J. Chem.* **1994**, *33*, 435–448.
- [30] M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel,

- M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari J. S. Binkley, C. Gonzales, R. L. Martin, D. J. Fox, D. J. Dfrees, J. Baker, J. J. P. Stewart, J. A. Pople, *Gaussian* 92, Revisions F.4, Gaussian Inc., Pittsburgh, PA, 1992.
- [31] E. Fanghänel, T. Palmer, J. Prakt. Chem. 1995, 125, 680-682.
 R. Mayer, W. Broy, R. Zahradnik, Adv. Heterocycl. Chem. 1967, 219-276.

- [32] U. Baumeister, J. Hartung, Z. Kristallogr. **1994**, 209, 376. [33] E. Günther, S. Hünig, Chem. Ber. **1992**, 125, 1235–1241. [34] V. D. Pokodenko, V. K. Kosperson, A. N. Inozemtsev, J. Chem.
- Soc., Chem. Commun. 1985, 72–73.

 [35] J. Suffert, J. Org. Chem. 1989, 46, 509–510.

 [36] W. C. Still, M. Khan, A. Mitra, J. Org. Chem. 1978, 43, 2923–2925.
- N. G. Rule, M. R. Detty, J. E. Kaeding, J. A. Sinicropi, J. Org. Chem. 1995, 60, 1665-1673. L. L. Gershbein, C. D. Hurd, J. Am. Chem. Soc. 1947, 69, 241-242.
 J. Otera, N. Dan-oh, H. Nozaki, J. Org. Chem. 1991, 56, 5327, 5341.
- 5307-5311.
- [39] Further details of the crystal structure investigations are available from CCDC, 12th Union Road, Cambridge CB2 1 EZ, U.K. [Fax.: internat. code + 44(1223)336-004], on quoting the depository number CCDC-101065.

[98160]